

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Winchester Australia Ltd

Chemwatch Hazard Alert Code: 4

Issue Date: **01/08/2019** Print Date: **01/08/2019** L.GHS.AUS.EN

Chemwatch: 5363-09 Version No: 2.1.1.1 Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile	
Synonyms	Article Number: Model 2400	
Proper shipping name	CARTRIDGES FOR WEAPONS, INERT PROJECTILE or CARTRIDGES, SMALL ARMS	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Explosive product.

Details of the supplier of the safety data sheet

Registered company name	Winchester Australia Ltd
Address	65 Hays Road Moolap, Geelong VIC 3224 Australia
Telephone	+61 3 5245 2400
Fax	+61 3 5248 2409
Website	Not Available
Email	aedmondson@olin.com.au

Emergency telephone number

Association / Organisation	Winchester Australia
Emergency telephone numbers	0418 158 337 All hours
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	1		
Toxicity	0		0 = Minimum
Body Contact	0		1 = Low 2 = Moderate
Reactivity	4		3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable	
Classification [1]	Explosive Division 1.4, Self Reactive Type A	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

NGER
'n

Hazard statement(s)

······································	
H204	Fire or projection hazard.
H240	Heating may cause an explosion.

Chemwatch: 5363-09 Version No: 2.1.1.1

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Issue Date: 01/08/2019 Print Date: 01/08/2019

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P234	Keep only in original container.
P250	Do not subject to grinding/shock/sources of friction.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P220	Keep/Store away from clothing/organic material/combustible materials.
P240	Ground/bond container and receiving equipment.

Precautionary statement(s) Response

P370+P380	In case of fire: Evacuate area.
P370+P380+P375	In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion.
P372	Explosion risk in case of fire.
P374	Fight fire with normal precautions from a reasonable distance.
P373	DO NOT fight fire when fire reaches explosives.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P411	Store at temperatures not exceeding 30°C/86°F (see storage requirements on SDS).
P401	Store according to local regulations for explosives.
P420	Store away from other materials.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1309-48-4.	>50	magnesium oxide
9004-70-0	10-25	<u>nitrocellulose</u>
55-63-0	<10	<u>nitroglycerin</u>
68611-44-9	<10	silica amorphous
7440-50-8	<10	copper
84-74-2	<1	dibutyl phthalate
10022-31-8	<1	barium nitrate
12403-82-6	<1	lead styphnate, monobasic
122-39-4	<1	diphenylamine
7757-79-1	<1	potassium nitrate
1345-04-6	<1	antimony trisulfide
7440-66-6	<1	zinc powder - pyrophoric

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation.
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	Not considered a normal route of entry. Not normally a hazard due to physical form of product.

Chemwatch: 5363-09 Page 3 of 16 Issue Date: 01/08/2019 Version No: 2.1.1.1 Print Date: 01/08/2019

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Treat symptomatically

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

DANGER: Deliver media remotely.

- For minor fires: Flooding quantities only.
- For large fires: Do not attempt to extinguish

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

Advice for firefighters

WARNING: EXPLOSIVE MATERIALS / ARTICLES PRESENT! ► Evacuate all personnel and move upwind. Prevent re-entry. Alert Fire Brigade and tell them location and nature of hazard. May be explosively reactive, detonate and release much heat. Wear full-body protective clothing with breathing apparatus.

Fire Fighting

- Prevent, by any means available, spillage and fire effluent from entering drains or watercourses.
- ▶ Fight from safe distances and protected locations.
- ► Use flooding quantities of water.
- DO NOT approach containers suspected to be hot.
- Cool any exposed containers not involved in fire from protected locations.
- Equipment should be thoroughly decontaminated after use

Individual devices will randomly explode. Will not mass explode if multiple devices are involved. In unusual cases, shrapnel may be thrown from exploding devices under containment.

Division 1.4 Substances, mixtures and articles which present no significant hazard: substances, mixtures and articles which present only a small hazard in the event of ignition or initiation. The effects are largely confined to the package and no projection of fragments of appreciable size or range is to be expected. An external fire shall not cause virtually instantaneous explosion of almost the entire contents of the package.

Compatibility Group C explosives are propellant explosive substances or other deflagrating explosive substances or article containing such explosive substances

Fire/Explosion Hazard

Decomposition may produce toxic fumes of:

nitrogen oxides (NOx) carbon monoxide (CO) carbon dioxide (CO2) sulfur oxides (SOx) metal oxides

HAZCHEM

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for cor	ntainment and cleaning up
Minor Spills	WARNING!: EXPLOSIVE. BLAST and/or PROJECTION and/or FIRE HAZARD Clean up all spills immediately. Avoid inhalation of the material and avoid contact with eyes and skin. Wear impervious gloves and safety glasses. Remove all ignition sources. Use spark-free tools when handling. Sweep into non-sparking containers or barrels and moisten with water. Place spilled material in clean, sealable, labelled container for disposal. Flush area with large amounts of water.
Major Spills	WARNING: EXPLOSIVE. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Consider evacuation (or protect in place). In case of transport accident notify Police, Emergency Authority, Competent Explosives Authority or Manufacturer. No smoking, naked lights, heat or ignition sources. Increase ventilation. Use extreme caution to prevent physical shock. Use only spark-free shovels and explosion-proof equipment. Collect recoverable material and segregate from spilled material. Wash spill area with large quantities of water.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Version No: **2.1.1.1**

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Issue Date: **01/08/2019**Print Date: **01/08/2019**

Precautions for safe handling

Under normal handling, no exposure to harmful materials will occur.

- ► Handle gently. Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Avoid all personal contact, including inhalation.
- Avoid smoking, naked lights, heat or ignition sources.
- ▶ Explosives must not be struck with metal implements.
- ► Avoid mechanical and thermal shock and friction.
 ► Use in a well ventilated area.
 - F Use in a well verillated area.
 - Avoid contact with incompatible materials.
 - When handling DO NOT eat, drink or smoke.Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - ▶ Work clothes should be laundered separately.
 - ▶ Store cases in a well ventilated magazine licensed for the appropriate Class, Division and Compatibility Group.
 - ▶ Rotate stock to prevent ageing. Use on FIFO (first in-first out) basis.
 - Observe manufacturer's storage and handling recommendations contained within this SDS.
 - ▶ Store in a cool place in original containers.
- Other information
- Keep containers securely sealed.No smoking, naked lights, heat or ignition sources.
- Store in an isolated area away from other materials.
- ► Keep storage area free of debris, waste and combustibles.
- ► Protect containers against physical damage.
- ► Check regularly for spills and leaks

NOTE: If explosives need to be destroyed contact the Competent Authority.

Conditions for safe storage, including any incompatibilities

Suitable container

Store in original containers.

Storage incompatibility

- ▶ Reacts with acids producing flammable / explosive hydrogen (H2) gas
- ► Avoid reaction with oxidising agents
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

strong alkalis

X — Must not be stored together

May be stored together with specific preventions

May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	magnesium oxide	Magnesium oxide (fume)	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	nitroglycerin	Nitroglycerine (NG)	0.05 ppm / 0.46 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica amorphous	Silica gel	10 mg/m3	Not Available	Not Available	See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Silica gel	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Precipitated silica	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Precipitated silica	10 mg/m3	Not Available	Not Available	See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Diatomaceous earth (uncalcined)	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Diatomaceous earth (uncalcined)	10 mg/m3	Not Available	Not Available	See Silica -Amorphous; (a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	silica amorphous	Silica - Amorphous: Fume (thermally generated)(respirable dust)	2 mg/m3	Not Available	Not Available	(e) Containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	silica amorphous	Fumed silica (respirable dust)	2 mg/m3	Not Available	Not Available	See Silica -Amorphous

Chemwatch: 5363-09 Page 5 of 16 Issue Date: 01/08/2019 Version No: 2.1.1.1 Print Date: 01/08/2019

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Australia Exposure Standards	copper	Copper, dusts & mists (as Cu)	1 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	copper	Copper (fume)	0.2 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	dibutyl phthalate	Dibutyl phthalate	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	barium nitrate	Barium, soluble compounds (as Ba)	0.5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	diphenylamine	Diphenylamine	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	antimony trisulfide	Antimony & compounds (as Sb)	0.5 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

EWIERGENCT LIWITS				
Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
magnesium oxide	Magnesium oxide	30 mg/m3	120 mg/m3	730 mg/m3
nitroglycerin	Nitroglycerin	0.1 mg/m3	2 mg/m3	75 mg/m3
silica amorphous	Silica gel, amorphous synthetic	18 mg/m3	200 mg/m3	1,200 mg/m3
silica amorphous	Silica, amorphous fumed	18 mg/m3	100 mg/m3	630 mg/m3
silica amorphous	Siloxanes and silicones, dimethyl, reaction products with silica; (Hydrophobic silicon dioxide, amorphous)	120 mg/m3	1,300 mg/m3	7,900 mg/m3
silica amorphous	Silica, amorphous fume	45 mg/m3	500 mg/m3	3,000 mg/m3
silica amorphous	Silica amorphous hydrated	18 mg/m3	220 mg/m3	1,300 mg/m3
copper	Copper	3 mg/m3	33 mg/m3	200 mg/m3
dibutyl phthalate	Dibutyl phthalate	15 mg/m3	84 mg/m3	9300 mg/m3
barium nitrate	Barium nitrate	2.9 mg/m3	350 mg/m3	2,100 mg/m3
diphenylamine	Diphenylamine	30 mg/m3	180 mg/m3	220 mg/m3
potassium nitrate	Potassium nitrate	9 mg/m3	100 mg/m3	600 mg/m3
zinc powder - pyrophoric	Zinc	6 mg/m3	21 mg/m3	120 mg/m3

Ingredient	Original IDLH	Revised IDLH
magnesium oxide	750 mg/m3	Not Available
nitrocellulose	Not Available	Not Available
nitroglycerin	75 mg/m3	Not Available
silica amorphous	3,000 mg/m3	Not Available
copper	100 mg/m3	Not Available
dibutyl phthalate	4,000 mg/m3	Not Available
barium nitrate	50 mg/m3	Not Available
lead styphnate, monobasic	100 mg/m3	Not Available
diphenylamine	Not Available	Not Available
potassium nitrate	Not Available	Not Available
antimony trisulfide	50 mg/m3	Not Available
zinc powder - pyrophoric	Not Available	Not Available

MATERIAL DATA

Exposure controls

Appropriate engineering controls

Engineering controls for explosive articles are designed to reduce or eliminate fragmentation and/or blast effects either by suppression of the source of detonation or by protection at the exposed location, or both. Barricades, shields, contained detonation chambers, and "zero quantity-distance (Q-D)" magazines are examples of engineering controls.

Engineering controls are designed and tested in a rigorous fashion. The construction of the engineering control must be carefully duplicated in field applications to assure it will function properly.

It is thus imperative that engineering controls be built exactly in accordance with the design package, and that they be used only for the articles (e.g.munitions) for which they are authorised.

Personal protection

Eye and face protection

- ▶ Safety glasses with side shields; or as required,
- Chemical goggles.
- ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens

Version No: **2.1.1.1**

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Issue Date: **01/08/2019**Print Date: **01/08/2019**

	 should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]
Skin protection	See Hand protection below
Hands/feet protection	Wear physical protective gloves, e.g. leather ► Heavy weight Rubber gloves ► Rubber boots - Non-sparking or conductive footwear essential. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.
Body protection	See Other protection below
Other protection	Ear protection.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Material	CPI
BUTYL	A
NATURAL RUBBER	A
NATURAL+NEOPRENE	A
NEOPRENE	A
NEOPRENE/NATURAL	A
NITRILE	A
PE/EVAL/PE	A
PVA	A
VITON	A

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

 $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds (below 65 \ degC)$

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Dark grey odourless solid.		
Physical state	Manufactured	Relative density (Water = 1)	Not Applicable
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Applicable	Viscosity (cSt)	Not Applicable
Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Applicable
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Not Applicable	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Applicable

SECTION 10 STABILITY AND REACTIVITY

Reactivity

See section 7

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Issue Date: 01/08/2019 Print Date: 01/08/2019

Chemical stability	Cartridge may detonate if case is punctured or severely damaged. Presence of shock and friction Presence of open flame
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Inhaled	Not normally a hazard due to physical form of product.		
Ingestion	Not normally a hazard due to physical form of product.		
Skin Contact	Not normally a hazard due to physical form of product.		
Eye	Not normally a hazard due to physical form of product.		
Chronic	Explosive components are completely sealed within the cartridge.	Under normal handling of this product, no exposure to harmful materials will occur.	
Combined Systems MODEL	TOXICITY	IRRITATION	
2400 12ga Inert Powder Barricade Projectile	Not Available	Not Available	
	TOXICITY	IRRITATION	
magnesium oxide	Not Available	Not Available	
nitrocellulose	тохісіту	IRRITATION	
nitrocentilose	Oral (rat) LD50: >5000 mg/kg ^[2]	Not Available	
	тохісіту	IRRITATION	
nitroglycerin	dermal (rat) LD50: =29.2 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: 105 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye (rabbit): non-irritating *	
silica amorphous	Inhalation (rat) LC50: >0.139 mg/l/14h**[Grace] ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: 3160 mg/kg ^[2]	Skin (rabbit): non-irritating *	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
copper	Inhalation (rat) LC50: 0.733 mg/l4 h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: 300-500 mg/kg ^[1]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
dibutyl phthalate	Inhalation (mouse) LC50: 12.5 mg/l/2H ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: 100 mg/kg ^[1]		
	тохісіту	IRRITATION	
barium nitrate	Oral (rat) LD50: >50-300 mg/kg ^[1]	Eye (rabbit):100 mg/24h - moderate	
		Skin (rabbit): 500 mg/24h - mild	
lead styphnate, monobasic	тохісіту	IRRITATION	
organico, monobasic	Not Available	Not Available	
	TOXICITY	IRRITATION	
diphenylamine	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]	
	Oral (rat) LD50: 1120 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
potassium nitrate	dermal (rat) LD50: >5000 mg/kg ^[1]	Not Available	

Chemwatch: 5363-09 Page 8 of 16

Issue Date: 01/08/2019 Version No: 2.1.1.1 Print Date: 01/08/2019 Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

	Oral (rat) LD50: >2000 mg/kg ^[1]		
	TOXICITY	IRRITATION	
antimony trisulfide	dermal (rat) LD50: >2000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (rat) LD50: >2000 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
zinc powder - pyrophoric	Inhalation (rat) LC50: >1.79 mg/l4 h ^[1]	Skin(human): 0.3 mg/3d - I	
	Oral (rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
Legend:	1 Value obtained from Europe ECHA Registered Substances - Acute	toxicity 2 * Value obtained from manufacturer's SDS. I Inless otherwise specified	
Legena:	Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

NITROGLYCERIN

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce coniunctivitis

Substance has been investigated as a tumorigen, mutagen and reproductive effector. Equivocal tumorigen by RTECS criteria. Reproductive effector in rats

For silica amorphous:

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.

After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

SILICA AMORPHOUS

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact.

Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne

concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected. In humans, SAS is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin.

There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.

Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS]

for copper and its compounds (typically copper chloride):

Acute toxicity: There are no reliable acute oral toxicity results available. In an acute dermal toxicity study (OECD TG 402), one group of 5 male rats and 5 groups of 5 female rats received doses of 1000, 1500 and 2000 mg/kg bw via dermal application for 24 hours. The LD50 values of copper monochloride were 2,000 mg/kg bw or greater for male (no deaths observed) and 1,224 mg/kg bw for female. Four females died at both 1500 and 2000 mg/kg bw, and one at 1,000 mg/kg bw. Symptom of the hardness of skin, an exudation of hardness site, the formation of scar and reddish changes were observed on application sites in all treated animals. Skin inflammation and injury were also noted. In addition, a reddish or black urine was observed in females at 2,000, 1,500 and 1,000 mg/kg bw. Female rats appeared to be more sensitive than male based on mortality and clinical signs.

No reliable skin/eye irritation studies were available. The acute dermal study with copper monochloride suggests that it has a potential to cause skin irritation.

Repeat dose toxicity: In repeated dose toxicity study performed according to OECD TG 422, copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39 - 51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL value was 5 and 1.3 mg/kg bw/day for male and female rats, respectively. No deaths were observed in male rats. One treatment-related death was observed in female rats in the high dose group. Erythropoietic toxicity (anaemia) was seen in both sexes at the 80 mg/kg bw/day. The frequency of squamous cell hyperplasia of the forestomach was increased in a dose-dependent manner in male and female rats at all treatment groups, and was statistically significant in males at doses of =20 mg/kg bw/day and in females at doses of =5 mg/kg bw/day doses. The observed effects are considered to be local, non-systemic effect on the forestomach which result from oral (gavage) administration of copper monochloride.

COPPER

Genotoxicity: An in vitro genotoxicity study with copper monochloride showed negative results in a bacterial reverse mutation test with Salmonella typhimurium strains (TA 98, TA 100, TA 1535, and TA 1537) with and without S9 mix at concentrations of up to 1,000 ug/plate. An in vitro test for chromosome aberration in Chinese hamster lung (CHL) cells showed that copper monochloride induced structural and numerical aberrations at the concentration of 50, 70 and 100 ug/mL without S9 mix. In the presence of the metabolic activation system, significant increases of structural aberrations were observed at 50 and 70 ug/mL and significant increases of numerical aberrations were observed at 70 ug/mL. In an in vivo mammalian erythrocyte micronucleus assay, all animals dosed (15 - 60 mg/kg bw) with copper monochloride exhibited similar PCE/(PCE+NCE) ratios and MNPCE frequencies compared to those of the negative control animals. Therefore copper monochloride is not an in vivo mutagen.

Carcinogenicity: there was insufficient information to evaluate the carcinogenic activity of copper monochloride.

Reproductive and developmental toxicity. In the combined repeated dose toxicity study with the reproduction/developmental toxicity screening test (OECD TG 422), copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39-51 days to females at concentrations of 0, 1.3, 5.0, 20, and 80 mg/kg bw/day. The NOAEL of copper monochloride for fertility toxicity was 80 mg/kg bw/day for the parental animals. No treatmentrelated effects were observed on the reproductive organs and the fertility parameters assessed. For developmental toxicity the NOAEL was 20 mg/kg bw/day. Three of 120 pups appeared to have icterus at birth; 4 of 120 pups appeared runted at the highest dose tested (80 mg/kg bw/day). WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an acute industrial disease of short duration. Symptoms are tiredness, influenza like respiratory tract irritation with fever.

Chemwatch: **5363-09** Page **9** of **16** Issue Date: **01/08/2019**

Version No: **2.1.1.1**

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Print Date: 01/08/2019

For dibutyl phthalate (DBP):

In studies on rats, DBP is absorbed through the skin, although in *in vitro* studies human skin has been found to be less permeable than rat skin to this compound. Studies in laboratory animals indicate that DBP is rapidly absorbed from the gastrointestinal tract, distributed primarily to the liver and kidneys of rats and excreted in urine as metabolites following oral or intravenous administration. Following inhalation, it was consistently detected at low concentrations in the brain. Available data indicate that in rats, following ingestion, DBP is metabolised by nonspecific esterases mainly in the small intestine to yield mono- *n*-butyl phthalate (MBP) with limited subsequent biochemical oxidation of the alkyl side chain of MBP. MBP is stable and resistant to hydrolysis of the second ester group. Accumulation has not been observed in any organ. The profile of effects following exposure to DBP is similar to that of other phthalate esters, which, in susceptible species, can induce hepatomegaly, increased numbers of hepatic peroxisomes, foetotoxicity, teratogenicity and testicular damage.

Acute toxicity: The acute toxicity of DBP in rats and mice is low. Signs of acute toxicity in laboratory animals include depression of activity, laboured breathing and lack of coordination. In a case of accidental poisoning of a worker who ingested approximately 10 grams of DBP, recovery was gradual within two weeks and complete after 1 month.

On the basis of limited available data in animal species, DBP appears to have little potential to irritate skin or eyes or to induce sensitization. In humans, a few cases of sensitization after exposure to DBP have been reported, although this was not confirmed in controlled studies of larger numbers of individuals reported only in secondary accounts

Repeat dose toxicity: In short-term repeated-dose toxicity studies, effects at lowest levels in rats after oral administration for 5 to 21 days included peroxisome proliferation and hepatomegaly at doses of 420 mg/kg body weight per day or more. In longer-term studies, the effects in rats observed following ingestion of DBP for periods up to 7 months included reduced rate of weight gain at doses of 250 mg/kg body weight per day or more. Increase in relative liver weight has been observed at doses of 120 mg/kg body weight or more. Peroxisomal proliferation with increased peroxisomal enzyme activity has been observed at doses of 279 mg/kg body weight per day or more. Necrotic hepatic changes in Wistar rats have been reported at doses of 250 mg/kg body weight per day or more but not in F-344 or Sprague-Dawley rats exposed to up to 2500 mg/kg body weight per day. Alteration in testicular enzymes and degeneration of testicular germinal cells of rats have been observed at doses of 250 and 571 mg/kg body weight per day. There are considerable species differences in effects on the testes following exposure to DBP, minimal effects being observed in mice and hamsters at doses as high as 2000 mg/kg body weight per day. In mice, effects on body and organ weights and histological alterations in the liver indicative of metabolic stress have been reported in a recent subchronic bioassay, for which the no-observed-effect-level (NOEL) was 353 mg/kg body weight per day.

Developmental toxicity: . In a continuous breeding protocol, which included cross-over mating and offspring assessment phases, rats were exposed to 0, 1000, 5000 or 10 000 mg DBP/kg in the diet (equivalent to 0, 66, 320 and 651 mg/kg body weight per day). In the first generation the reduction in pup weight in the mid-dose group, in the absence of any adverse effect on maternal weight, could be regarded as a developmental toxicity effect. There was also a significant reduction of live litter numbers at all three dose levels. The effects in the second generation were more severe, with reduced pup weight in all groups including the low-dose group, structural defects (such as prepucial/ penile malformations, seminiferous tubule degeneration, and absence or underdevelopment of the epididymides) in the mid- and high-dose groups, and severe effects on spermatogenesis in the high-dose group that were not seen in the parent animals. These results suggest that the adverse effects of DBP are more marked in animals exposed during development and maturation than in animals exposed as adults only. No clear NOEL was established in this study. The lowest-observed- adverse-effect-level (LOAEL) was considered to be 66 mg/kg body weight per day. The available studies show that DBP generally induces foetotoxic effects in the absence of maternal toxicity. Available data also indicate that DBP is teratogenic at high doses and that susceptibility to teratogenesis varies with developmental stage and period of administration. In mice, DBP caused dose-dependent increases in the number of resorptions and dead fetuses at oral doses of 400 mg/kg body weight per day or more. Dose-dependent decreases in fetal weights and number of viable litters were also observed in mice at these doses. Adequate carcinogenesis bioassays for DBP have not been conducted. The weight of the available evidence indicates that DBP is not genotoxic.

The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisome proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leukotriene D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure.

Transitional Phthalate Esters: produced from alcohols with straight-chain carbon backbones of C4 to C6. This subcategory also includes a phthalate produced from benzyl alcohol as one ester group with the second ester composed of an alkyl group with a C5 carbon backbone and butyrate group. Phthalate esters containing >10% C4 to C6 molecules were conservatively included in this subcategory. Branched C7 and C8 isomers (di-iso-heptyl, di-iso-octyl and diethylhexyl phthalates) in contrast to linear dihexyl and dioctyl phthalate are members of this family.

Transitional phthalates have varied uses, but are largely used as plasticisers for PVC. Physicochemical properties also vary in that the lower molecular weight transitional phthalates are more water-soluble than higher molecular weight transitional phthalates, but none would be characterised as highly water soluble. Transitional phthalates have lower water solubility than the low molecular weight phthalates and except for butylbenzyl phthalate (BBP), existing data suggest they do not exhibit acute or chronic aquatic toxicity. What distinguishes some of the transitional phthalates from others is their greater mammalian toxicity potential, particularly with regard to reproductive and developmental effects, compared to either the low or high molecular weight phthalates subcategories

Acute Toxicity. The available data on phthalates spanning the carbon range from C4 to C6 indicate that phthalate esters in the transitional subcategory are minimally toxic by acute oral and dermal administration. The oral LD50 value for BBP exceeds 2 g/kg, and for materials with higher molecular weights, the LD50 values exceed the maximum amounts which can be administered to the animals in a manner consistent with the principles of responsible animal use. One member of this subcategory, diethylhexyl phthalate (DEHP), has been tested for acute inhalation toxicity. It did not cause an effect at the highest concentration tested. Further, considering the low volatility of these substances, inhalation exposure at toxicologically significant levels is not anticipated. Repeated Dose Toxicity. Several substances in the C4 to C6 range, including BBP, have been tested for repeated dose toxicity in studies ranging from 3 weeks to 2 years. The principal effects found in these studies were those associated with peroxisome proliferation including liver enlargement and induction of peroxisomal enzymes. As shown in a comparative study of liver effects, the strongest inducers of peroxisome proliferation are diisononyl phthalate (DINP) and di-iso-decyl phthalate (DIDP) with substances of shorter chain length (e.g., BBP) showing much less pronounced effects. Thus it is reasonable to conclude that other members of this subcategory would show effects similar to BBP and less pronounced than DINP or DIDP. It should also be noted that the relevance of these findings to human health is, at best, questionable. It has been shown that these effects are mediated through the peroxisome proliferation-activated receptor alpha (PPARa) and that levels of PPARa are much higher in rodents than they are in humans. Thus one would expect humans to be substantially less responsive than rodents to peroxisome proliferation effects and invited by studies in primates in which repeated administration of DINP had no effects on liver, kidney or testicular p

Several of the substances in the transitional phthalate esters subcategory, however, have been shown to produce testicular atrophy when given to juvenile rats at high levels. Testicular atrophy has been associated with BBP and other substances with C4 to C6 linear carbon chains. However, molecules with fewer than 4 or more than 6 carbons did not produce testicular atrophy in these studies. Although the relevance of these data are uncertain, as the testes is not a target organ for diethylhexyl phthalate (DEHP) in primates, these data do provide one of the distinguishing toxicological characteristics of this subcategory and are one of the underlying reasons supporting the differentiation of phthalate esters on the basis of length of the linear region of the carbon chain

Genetic Toxicity (Salmonella). A number of the substances in this subcategory including the reference substance BBP has been assessed in the Salmonella and mouse lymphoma assays. All of these substances were inactive in these assays.

Chromosomal Aberrations. BBP and dihexyl phthalate (DHP) were inactive in micronucleus assays in mice. DEHP was inactive in a cytogenetics assay in rat bone marrow. Disoheptyl phthalate was inactive in CHO cells, in vitro..

Reproductive toxicity: A series of studies assessed the structure-activity relationship of the effects of phthalate esters on fertility using a continuous breeding protocol. The test substances included in these studies were diethyl-, dipropyl-, dibutyl-, dipentyl-, d-n-hexyl-, di-2(ethylhexyl)-, and di-n-octyl phthalates. The most profound effects were on fertility (i.e., number of females delivering/ number mated) and number of live births. The substance showing the greatest activity was DEHP which produced effects at dietary levels of 0.1 % with a no effect level of 0.01 %. The next most active compounds were di-n-hexyl- and di-n-pentyl phthalate which showed effects in the range of 0.3 to 0.5 %; no effect levels were not experimentally defined. Dipropyl phthalate had an effect on live birth index at 2.5 % but produced no effects at 1.25 %. Diethyl phthalate and di-n-octyl phthalate were inactive at the highest levels tested, 2.5 % and 5.0 %, respectively. These data demonstrated that molecules with linear alkyl chains of 4 to 6 carbons profoundly affect fertility in rodents, with DEHP being the most active. Molecules with longer or shorter side chains are essentially inactive in these assays. These data were also a basis for the separation of phthalates into three categories based on length of side chain.

In addition to these data there are reproductive toxicity studies on BBP and DEHP.

A 2-generation reproductive study was conducted in rats in which BBP was administered via the diet. Parental effects were limited to changes in body

DIBUTYL PHTHALATE

Chemwatch: 5363-09 Page 10 of 16 Issue Date: 01/08/2019 Version No: 2.1.1.1

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Print Date: 01/08/2019

weight, weight gain, and increased absolute and relative liver weights. In the F1 parents, treatment with BBP affected mating and fertility indices and sperm number and motility. The F1 male offspring exhibited shortened anogenital distance, delayed acquisition of puberty and retention of nipples and areolae as well as reproductive effects. The NOAEL of the study was reported to be 3750 mg/kg for reproductive effects. However, for male F1 and F2 offspring, the NOEL for reproductive effects was reported to be 50 mg/kg based on reductions in anogenital distance. These studies along with previous data provide a good basis to assess the reproductive effects of C4 to C6 phthalate esters. Although several substances (diheptyl, heptyl nonyl, heptyl undecyl) have ester side chain constituents that predominately fall in the high molecular weight subcategory, these substances are conservatively assumed to exhibit reproductive effects similar to other transitional phthalates

Developmental toxicity: There have been extensive studies of the developmental toxicity of BBP and DEHP. These substances produce structural malformations and also affect male reproductive development. No effect levels are in the range of 50 to 300 mg/ kg bw/ day. There is also an unpublished developmental toxicity study of di-isoheptyl phthalate (DIHP). The results of these studies are broadly consistent with the structure-activity relationships previously described, i.e., that phthalate esters with linear carbon chains of C4 to C6 carbons produce much more profound effects that either shorter or longer molecules

Phthalate esters with >10% C4 to C6 isomers were conservatively placed in the transitional subcategory. This conclusion is supported by developmental test data on "711P*" (which showed structural malformations in rats at 1000 mg/ kg/ day with a NOAEL of 200 mg/ kg/ day ."711P" is an equal composition mixture of six phthalate esters consisting of linear and methyl-branched C7, C9, and C11 ester side chains. This test substance is considered by EPA under the following CAS Numbers.: 68515-44-6 (di C7), 68515-45-7 (di C9), 3648-20-2 (di C1 I), 111381-89-6 (C7, C9), 111381-90-9 (C7, C11), and 111381-91-0 (C9, C11). The overall content of C4 to C6 isomers in "71 1P" is approximately 10%, based on the contribution from methyl-branched C7 isomers e.g., di C7 (30% C4-C6); C7, C9 (15% C4-C6); and C7, C11 (15 % C4-C6). Test data on 711P were used selectively as read-across data to the C7-containing substances in the mixture, based on the C4 to C6 content of each substance in the mixture.

BARIUM NITRATE

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Based upon reviewed data the physicochemical and toxicological properties of the substituted diphenylamines are similar and follow a regular pattern as a result of that structural similarity.

Because of their powerful antioxidant properties, Substituted Diphenylamines, along with their common starting material, Diphenylamine, are regulated for use in several food-contact applications by the Food and Drug Administration as Indirect Food Additives under the following sections of the Code of

Heating may generate vapors which can irritate the eyes and respiratory passages. Drying of skin and mucous membranes leading to irritation may be possible from prolonged or repeated contact. Overexposure to vapors from heating the product may cause and/or skin irritation and respiratory tract irritation with symptoms such as, but not limited to, dizziness and flu-like symptoms

Acute toxicity: As a group these materials do not produce significant acute toxicity in mammals. All show a slight to very low order of toxicity following oral administration, with LD50 values ranging from >5000 to > 34,000 mg/kg. Overall, the acute dermal LD50 for these materials was greater than the 2000 mg/kg limit dose indicating a very low order of toxicity.

Mammalian Toxicology - Mutagenicity. Data from bacterial reverse mutation assays, in vitro and in vivo chromosome aberration studies, as well as additional supporting in vitro and in vivo genetic toxicity studies indicate a low concern for mutagenicity either for aryl or alkyl substituted materials. Similarly, the data for a mixed aryl/alkyl substituted molecule also indicates a lack of mutagenicity.

Acute toxicity: Diphenylamine and its substituted derivatives all show a slight to moderate order of toxicity following oral administration, with LD50 values ranging from >500 to > 34,000 mg/kg. Overall, the acute dermal LD50 for these materials was greater than the 2000 mg/kg limit dose indicating a very low order of toxicity

DIPHENYLAMINE

Mutagenicity: Of five substituted diphenylamines tested, there was one weakly positive mutagenic response with in the bacterial mutagenicity test, with diphenylamine (122-39-4). Overall weight of evidence for this material, as well as the category indicates a negative evaluation for bacterial mutagenicity. Substituted diphenylamines have been tested for mutagenicity in tests for gene mutations and chromosomal aberrations. The assays included point mutations in bacterial cells, in vitro chromosomal aberrations in mammalian cells, and in vivo chromosomal aberrations. With one exception, the data consistently demonstrate no evidence of genotoxicity for this category of materials. This suggests that all members of the category lack genotoxicity due to their similarity in chemical structures and physicochemical properties

Repeat Dose Toxicity: Diphenylamine (122-39-4) was tested in a 28 day oral study with rats. A NOAEL of 111 mg/kg/day was identified. Diphenylamine is not only the common precursor for the materials of this category, but also theoretically the most toxic of the class since it is the smallest member of the class. The addition of alkyl groups onto the diphenylamine molecule results in even lower water solubility and, therefore, becomes less bioavailable Diphenylamine, styrenated (68442-68-2) was tested in a 28day oral gavage study in rats. A NOAEL of 100 mg/kg/day was identified. Diphenylamine styrenated was tested in a 28-day gavage study in rats; 100 mg/kg/day was selected as the NOAEL. Diphenylamine-, reaction products with styrene and 2,4,4-trimethylpentene (68921-45-9) was tested in a 64 week rat dietary study; a LOEL of 2500 ppm was identified.

Reproductive and Developmental Toxicity: Diphenylamine was administered in feed at 0.1, 0.25 or 0.5% (ca. 67, 167 or 333 mg/kg/day) to rats in a two-generation reproductive toxicity study. In general, the average size of the litters decreased as the concentration of dietary diphenylamine increased. A NOEL was not established. A developmental study was also conducted with diphenylamine in rabbits. The test article was administered by gavage at dose levels of 0, 33, 100 and 300 mg/kg/day for gestation days 7-19. The test article produced minimal effects (decreased food consumption and mean body weight) to maternal rats at 300 mg/kg during pregnancy; there were no other signs of maternal toxicity. NOAEL for maternal toxicity was established at 100 mg/kg/day. The NOAEL for teratogenicity/developmental effects was greater than 300 mg/kg/day. ADI: 0.02 mg/kg/day NOEL: 1.5 mg/kg/day

MAGNESIUM OXIDE & LEAD STYPHNATE, MONOBASIC

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

MAGNESIUM OXIDE & DIPHENYI AMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production

NITROCELLULOSE & LEAD STYPHNATE, MONOBASIC

No significant acute toxicological data identified in literature search.

NITROGLYCFRIN & BARIUM **NITRATE & ZINC POWDER -PYROPHORIC**

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

SILICA AMORPHOUS & ANTIMONY TRISULFIDE

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Chemwatch: 5363-09 Version No: 2.1.1.1

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Issue Date: 01/08/2019 Print Date: 01/08/2019

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Combined Systems MODEL	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURC
2400 12ga Inert Powder Barricade Projectile				Not Available	Not Available	
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURC
magnesium oxide	Not Available	Not Available	Not Available		Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURC
nitrocellulose	EC50	96	Algae or other aquatic plants		579mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURC
	LC50	96	Fish		1.38mg/L	4
	EC50	48	Crustacea		46mg/L	4
nitroglycerin	EC50	96	Algae or other aquatic plants		0.4mg/L	4
	BCF	192	Fish		0.42mg/L	4
	NOEC	1440	Fish		0.03mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	! \	/ALUE	SOUR
	LC50	96	Fish		-289.09mg/L	2
silica amorphous	EC50	48	Crustacea		a.7600mg/L	1
	EC50	72	Algae or other aquatic plants		40mg/L	1
	NOEC	720	Crustacea		4.223mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	. VAI	_UE	SOURC
	LC50	96	Fish	0.0	01-0.09mg/L	2
	EC50	48	Crustacea	Crustacea 0.001mg/L		2
copper	EC50	72	Algae or other aquatic plants	Algae or other aquatic plants 0.01333		4
	BCF	960		Fish 200mg		4
	EC25	6	Algae or other aquatic plants	-)150495mg/L	4
	NOEC	96	Crustacea		008mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOUR
	LC50	96	Fish		0.35mg/L	4
	EC50	48	Crustacea	:	>0.003mg/L	2
dibutyl phthalate	EC50	96	Algae or other aquatic plants		0.0034mg/L	4
	BCF	24	Algae or other aquatic plants	<u> </u>	10mg/L	4
	EC10	48	Crustacea		>0.003mg/L	2
	NOEC	504	Fish		0.025mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOUR
barium nitrate	LC50	96	Fish		>3.5mg/L	2
	EC50	72	Algae or other aquatic plants		>1.15mg/L	2
	NOEC	72	Algae or other aquatic plants	1	>=1.15mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURC
lead styphnate, monobasic	Not Available	Not Available	Not Available		Not Available	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECIES		VALUE	SOURC
	LINDI OINI	12012010111011 (1111)	OI LOILO		VALUE	

Chemwatch: **5363-09** Page **12** of **16**

Version No: **2.1.1.1**

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Issue Date: 01/08/2019 Print Date: 01/08/2019

	EC50	48	Crustacea	0.31mg/L	4
	EC50	72	Algae or other aquatic plants	0.048mg/L	1
	BCF	768	Fish	0.0437mg/L	4
	NOEC	504	Crustacea	0.16mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-378mg/L	2
potassium nitrate	EC50	48	Crustacea	490mg/L	2
	EC50	96	Algae or other aquatic plants	1181.887mg/L	3
	NOEC	720	Fish	58mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	0.93mg/L	2
antimony trisulfide	EC50	48	Crustacea	1mg/L	2
	EC50	96	Algae or other aquatic plants	Algae or other aquatic plants 0.61mg/L	
	NOEC	720	Fish	>0.0075mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	0.001-0.58mg/L	2
zinc powder - pyrophoric	EC50	48	Crustacea	0.001-0.014mg/L	2
	EC50	72	Algae or other aquatic plants	0.106mg/L	4
	BCF	360	Algae or other aquatic plants	9mg/L	4
	NOEC	72	Algae or other aquatic plants	0.00006537mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
nitroglycerin	LOW (Half-life = 14 days)	LOW (Half-life = 0.73 days)
silica amorphous	LOW	LOW
dibutyl phthalate	LOW (Half-life = 23 days)	LOW (Half-life = 3.08 days)
diphenylamine	LOW (Half-life = 56 days)	Not Available
potassium nitrate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
silica amorphous	LOW (LogKOW = 0.5294)
dibutyl phthalate	LOW (BCF = 176)
diphenylamine	LOW (BCF = 253)
potassium nitrate	LOW (LogKOW = 0.209)

Mobility in soil

Ingredient	Mobility
silica amorphous	LOW (KOC = 23.74)
dibutyl phthalate	LOW (KOC = 1460)
diphenylamine	LOW (KOC = 1887)
potassium nitrate	LOW (KOC = 14.3)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ Explosives must not be thrown away, buried, discarded or placed with garbage.
- Explosives which are surplus, deteriorated or considered unsafe for transport, storage or use shall be destroyed and the statutory authorities shall be polified.
- This material may be disposed of by burning or detonation but the operation may only be performed under the control of a person trained in the safe

SECTION 14 TRANSPORT INFORMATION

Page **13** of **16** Issue Date: 01/08/2019 Version No: 2.1.1.1 Print Date: 01/08/2019 Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Labels Required

Land transport (ADG)

UN number	0339		
UN proper shipping name	CARTRIDGES FOR WEAPONS, INERT PROJECTILE or CARTRIDGES, SMALL ARMS		
Transport hazard class(es)	Class 1.4C Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions Not Applicable Limited quantity 0		

Air transport (ICAO-IATA / DGR)

UN number	0339			
UN proper shipping name	Cartridges for weapons,	inert projectile; Cartridges, small arms		
	ICAO/IATA Class	1.4C		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	1L		
Packing group	Not Applicable	Not Applicable		
Environmental hazard	Not Applicable			
	Special provisions		Not Applicable	
	Cargo Only Packing Instructions		130	
	Cargo Only Maximum Qty / Pack		75 kg	
Special precautions for user	Passenger and Cargo Packing Instructions		Forbidden	
	Passenger and Cargo Maximum Qty / Pack		Forbidden	
	Passenger and Cargo Limited Quantity Packing Instructions		Forbidden	
	Passenger and Cargo	Limited Maximum Qty / Pack	Forbidden	

Sea transport (IMDG-Code / GGVSee)

UN number	0339		
UN proper shipping name	CARTRIDGES FOR WEAPONS, INERT PROJECTILE or CARTRIDGES, SMALL ARMS		
Transport hazard class(es)	IMDG Class 1.4C IMDG Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-B , S-X Special provisions Not Applicable Limited Quantities 0		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

MAGNESIUM OXIDE(1309-48-4.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS) Australia Exposure Standards

NITROCELLULOSE(9004-70-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Page 14 of 16

Issue Date: 01/08/2019

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Print Date: 01/08/2019

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - Goods Too Dangerous To Be Transported Australia Explosives Code (AE Code)

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index International Air Transport Association (IATA) Dangerous Goods Regulations

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

NITROGLYCERIN(55-63-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - Goods Too Dangerous To Be Transported Australia Explosives Code (AE Code)

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix Α

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix G

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

International Air Transport Association (IATA) Dangerous Goods Regulations

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

SILICA AMORPHOUS(68611-44-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

GESAMP/EHS Composite List - GESAMP Hazard Profiles

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

COPPER(7440-50-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

DIBUTYL PHTHALATE(84-74-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

BARIUM NITRATE(10022-31-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

LEAD STYPHNATE, MONOBASIC(12403-82-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Explosives Code (AE Code)

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

International Air Transport Association (IATA) Dangerous Goods Regulations

International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

DIPHENYLAMINE(122-39-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Issue Date: 01/08/2019 Version No: 2.1.1.1

Print Date: 01/08/2019 Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

POTASSIUM NITRATE(7757-79-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

ANTIMONY TRISULFIDE(1345-04-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List

Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Exposure Standards

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix G

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Part 2, Section Seven - Appendix I

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations

International Maritime Dangerous Goods Requirements (IMDG Code)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

ZINC POWDER - PYROPHORIC(7440-66-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

National Inventory Status

National Inventory	Status
Australia - AICS	No (lead styphnate, monobasic)
Canada - DSL	No (lead styphnate, monobasic)
Canada - NDSL	No (zinc powder - pyrophoric; nitrocellulose; barium nitrate; copper; antimony trisulfide; magnesium oxide; nitroglycerin; diphenylamine; potassium nitrate; dibutyl phthalate)
China - IECSC	No (lead styphnate, monobasic; nitroglycerin)
Europe - EINEC / ELINCS / NLP	No (nitrocellulose)
Japan - ENCS	No (zinc powder - pyrophoric; lead styphnate, monobasic; copper)
Korea - KECI	Yes
New Zealand - NZIoC	No (lead styphnate, monobasic)
Philippines - PICCS	No (lead styphnate, monobasic)
USA - TSCA	Yes
Taiwan - TCSI	No (lead styphnate, monobasic)
Mexico - INSQ	No (lead styphnate, monobasic)
Vietnam - NCI	No (lead styphnate, monobasic)
Russia - ARIPS	No (lead styphnate, monobasic)
Thailand - TECI	No (zinc powder - pyrophoric; lead styphnate, monobasic; copper; nitroglycerin)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	01/08/2019
Initial Date	01/08/2019

SDS Version Summary

Version	Issue Date	Sections Updated
2.1.1.1	01/08/2019	Appearance, Classification, Fire Fighter (fire/explosion hazard), Ingredients, Physical Properties, Synonyms, Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references

Chemwatch: **5363-09** Page **16** of **16** Issue Date: **01/08/2019**

Version No: 2.1.1.1

Combined Systems MODEL 2400 12ga Inert Powder Barricade Projectile

Print Date: 01/08/2019

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 $\begin{array}{ll} {\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average} \\ {\sf PC-STEL: Permissible \ Concentration-Short \ Term \ Exposure \ Limit} \end{array}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.